Dioscin Inhibits HSC-T6 Cell Migration via Adjusting SDC-4 Expression: Insights from iTRAQ-Based Quantitative Proteomics
نویسندگان
چکیده
Hepatic stellate cells (HSCs) migration, an important bioprocess, contributes to the development of liver fibrosis. Our previous studies have found the potent activity of dioscin against liver fibrosis by inhibiting HSCs proliferation, triggering the senescence and inducing apoptosis of activated HSCs, but the molecular mechanisms associated with cell migration were not clarified. In this work, iTRAQ (isobaric tags for relative and absolution quantitation)-based quantitative proteomics study was carried out, and a total of 1566 differentially expressed proteins with fold change ≥2.0 and p < 0.05 were identified in HSC-T6 cells treated by dioscin (5.0 μg/mL). Based on Gene Ontology classification, String and KEGG pathway assays, the effects of dioscin to inhibit cell migration via regulating SDC-4 were carried out. The results of wound-healing, cell migration and western blotting assays indicated that dioscin significantly inhibit HSC-T6 cell migration through SDC-4-dependent signal pathway by affecting the expression levels of Fn, PKCα, Src, FAK, and ERK1/2. Specific SDC-4 knockdown by shRNA also blocked HSC-T6 cell migration, and dioscin slightly enhanced the inhibiting effect. Taken together, the present work showed that SDC-4 played a crucial role on HSC-T6 cell adhesion and migration of dioscin against liver fibrosis, which may be one potent therapeutic target for fibrotic diseases.
منابع مشابه
Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88/NF-κB signaling pathway
The present work aimed to investigate the activities and underlying mechanisms of dioscin against alcoholic liver fibrosis (ALF). In vivo liver fibrosis in mice was induced by an alcoholic liquid diet, and in vitro studies were performed on activated HSC-T6 and LX2 cells treated with lipopolysaccharide. Our results showed that dioscin significantly attenuated hepatic stellate cells (HSCs) activ...
متن کاملCaffeine Inhibits the Activation of Hepatic Stellate Cells Induced by Acetaldehyde via Adenosine A2A Receptor Mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK Signal Pathway
UNLABELLED Hepatic stellate cell (HSC) activation is an essential event during alcoholic liver fibrosis. Evidence suggests that adenosine aggravates liver fibrosis via the adenosine A2A receptor (A2AR). Caffeine, which is being widely consumed during daily life, inhibits the action of adenosine. In this study, we attempted to validate the hypothesis that caffeine influences acetaldehyde-induced...
متن کاملCombined Taurine, Epigallocatechin Gallate and Genistein Therapy Reduces HSC-T6 Cell Proliferation and Modulates the Expression of Fibrogenic Factors
Hepatic fibrogenesis involves the activation of hepatic stellate cells (HSCs), which synthesize excess extracellular matrix and contribute to the development of liver fibrosis. In a prior study we tested the effect of combined treatment with taurine, epigallocatechin gallate and genistein on the development of alcohol-induced liver fibrosis in vitro. In this study, the biological activity of th...
متن کاملHepatic stellate cells secretes type I collagen to trigger epithelial mesenchymal transition of hepatoma cells.
Liver fibrosis is a risk factor for hepatoma. Activated hepatic stellate cells (HSCs) play a critical role in progression of hepatoma. Resected hepatoma patients with high α-SMA+HSCs infiltration had worse survival, OR: 2.2 and p=0.0434. We hypothesized that HSCs could increase the epithelial-mesenchymal transition (EMT) ability of hepatoma cells. In murine model of liver fibrosis with injectio...
متن کاملPotent effects of dioscin against liver fibrosis
We previously reported the promising effects of dioscin against liver injury, but its effect on liver fibrosis remains unknown. The present work investigated the activities of dioscin against liver fibrosis and the underlying molecular mechanisms. Dioscin effectively inhibited the cell viabilities of HSC-T6, LX-2 and primary rat hepatic stellate cells (HSCs), but not hepatocytes. Furthermore, d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017